CRISPR-Engineered Human Brown-Like Adipocytes Prevent Diet-Induced Obesity and Ameliorate Metabolic Syndrome in Mice

<u>Chih-Hao Wang¹</u>, Morten Lundh^{1,2}, Accalia Fu³, Rókus Kriszt^{4,5}, Tian Lian Huang¹, Matthew D. Lynes¹, Luiz O. Leiria¹, Farnaz Shamsi¹, Justin Darcy¹, Bennett P. Greenwood⁶, Niven R. Narain⁶, Vladimir Tolstikov⁶, Kyle L. Smith⁷, Brice Emanuelli², Young-Tae Chang^{8,9}, Susan Hagen⁷, Nika N. Danial³, Michael A. Kiebish⁶, Yu-Hua Tseng^{1,10}

¹Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; ²The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark; ³Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ⁴Department of Biomedical Engineering, National University of Singapore, Singapore; ⁵Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore; ⁶BERG, Framingham, MA, USA; ⁷Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁸Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea; ⁹Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; ¹⁰Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA

Abstract

Brown and brown-like beige/brite adipocytes dissipate energy, and have been proposed as therapeutic targets to combat metabolic disorders. However, therapeutic effects of cellbased therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells that acquired key features of human brown fat by engineering human white preadipocytes using the CRISPR/Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression. Obese mice that received HUMBLE cell transplants showed a sustained improvement in glucose tolerance and insulin sensitivity, as well as increased energy expenditure. Mechanistically, increased arginine/nitric oxide (NO) metabolism in HUMBLE adipocytes promoted the production of NO, which was carried by S-nitrosothiols and nitrite in red blood cells to activate endogenous brown fat and improve glucose homeostasis in recipient animals. Taken together, these data demonstrate the utility of using CRISPR/Cas9 technology to engineer human white adipocytes to display brownlike phenotypes, and open up an exciting cell-based therapeutic opportunity to combat obesity and diabetes.